主要功能
采用板載芯片 LED 陣列技術,用 6 種不同波段的激發(fā)光作為測量光、光化光、飽和脈沖、單周轉(zhuǎn)飽和閃光與多周轉(zhuǎn)飽和閃光
具備比 PAM-2500 高 200 倍的靈敏度
可用于很稀的懸浮液(藻液、葉綠體懸浮液)測量
專用葉夾可用于高等植物/大型海藻等葉片狀樣品的測量
標準的PAM測量功能、復雜的多相熒光上升動力學擬合分析、馳豫動力學分析
特別適合狀態(tài)轉(zhuǎn)換研究、“非活性PSII”(“Inactive PS II”)研究
超快時間分辨率達到 10 ms,由此利用獨特的 O-I1 相(O-J相)擬合分析用于分析PSII反映中心異質(zhì)性分析,得出 PS II 光合單位的連接性參數(shù)(p和J),速率常數(shù)(Tau)和兩種不同類型 PS II(Type 1 和Type 2)的光學截面積(Sigma(II)λ)等參數(shù)
新增 PSII 有效光強 PAR(II)、經(jīng)過 PSII 的絕對電子傳遞速率 ETR(II)λ 等全新的光合參數(shù)。
配套的操作軟件,用于復雜的擬合分析
測量參數(shù)
Fo, Fm, F, Fm', Fv/Fm, Y(II), qP, qN, NPQ, Y(NO), Y(NPQ), ETR, ETR(II)λ, p, J, Tau, Sigma(II)λ, PAR、PAR(II) 等
應用領域
主要用于各種藻類的深入光合作用機理研究,用適合的波長、全新的測量、全新的參數(shù)進行藍藻、綠藻、硅藻、甲藻、紅藻、隱藻等的深入研究。如選配高等植物附件,也可實現(xiàn)對高等植物葉片的測量。
主要技術參數(shù)
測量光:提供 400、440、480、540、590 和 625 nm 的脈沖調(diào)制測量光,20 個強度選擇,14 個頻率選擇。
光化光:提供 440、480、540、590、625 nm 和 420-640 nm(白光)連續(xù)光化光照,最大光強 4000 μmol m-2 s-1;單周轉(zhuǎn)飽和閃光的最大強度 200 000 μmol m-2 s-1,持續(xù)時間 5-50 μs可調(diào);多周轉(zhuǎn)飽和閃光強度 10 000 μmol m-2 s-1,1-800 ms可調(diào)。
遠紅光:725 nm。
信號檢測:PIN-光電二極管,帶特制鎖相放大器(專利設計),最大時間分辨率 10 μs。
Multi-Color-PAM的功能介紹
光系統(tǒng) II 的相對電子傳遞速率 rETR 是很常用的一個參數(shù)。rETR = PAR × Y(II) × ETR-factor,其中 ETR-factor 是指光系統(tǒng)II吸收的光能占總入射 PAR 的比例。在大多數(shù)已發(fā)表的文獻中,均沒有試圖去測定 ETR-factor,只是簡單地假定跟 “模式葉片” 相同,即有 50% 的 PAR 分配到光系統(tǒng) II,84% 的 PAR 被光合色素吸收。因此在已有的文獻中,rETR一般是用公式 rETR = PAR × Y(II) × 0.84 × 0.5 來計算的。
近期,利用多激發(fā)波長調(diào)制葉綠素熒光儀 MULTI-COLOR-PAM 可以實現(xiàn)光系統(tǒng)II的絕對電子傳遞速率 ETR(II)λ 的測量。首先需要利用 MULTI-COLOR-PAM 測定某個波長下的光系統(tǒng)II功能性光學截面積 Sigma(II)λ(單位nm2)(其中λ為波長),然后求出光系統(tǒng)II的量子吸收速率 PAR(II) = Sigma(II)λ × L × PAR = 0.6022 × Sigma(II)λ× PAR。其中 L 為阿伏伽德羅常數(shù),系數(shù) 0.6022 是將 1 μmol quanta m-2 (即 6.022 × 1017 quanta m-2)轉(zhuǎn)換為 0.6022 quanta nm-2,PAR(II) 的單位為 quanta/(PSII × s)。接下來就可以計算 ETR(II)λ = PAR(II) × Y(II)/Y(II)max,其中 Y(II)max 是經(jīng)過暗適應達到穩(wěn)態(tài)后的光系統(tǒng)II的量子產(chǎn)量,也就是 Fv/Fm×ETR(II) 的單位為 electrons/(PSII × s)。
傳統(tǒng)的調(diào)制葉綠素熒光儀一般只能提供一種或兩種顏色的光源,如發(fā)出白光的鹵素燈、發(fā)出藍光的藍色 LED 或發(fā)出紅光的紅色 LED 等。用不同顏色的光測量的結果可能會有不同,如圖 1A 所示,用藍光(440 nm)和紅光(625 nm)測量綠藻小球藻的快速光曲線有非常顯著的差別,藍光照射下的 rETRmax 顯著小于紅光照射下,且在較強的光曲線 rETR 有輕微下降趨勢,這說明藍光的更容易引發(fā)光抑制 (Schreiber, Klughammer et al. 2011, Schreiber, Klughammer et al. 2012)。由此可以推測,過去文獻報道的很過實驗結果,可能會存在由于采用的激發(fā)光源不同而引起的錯誤理解。
如上文所述,利用 MULTI-COLOR-PAM,已經(jīng)可以測量真實電子傳遞速率 ETR(II)λ。如果用 ETR(II)λ 來繪制快速光曲線會出現(xiàn)什么結果呢?圖 1B 是將圖 1A 的結果轉(zhuǎn)換成絕對電子傳遞速率后得到的結果,可以看出無論是照射藍光還是照射紅光,其絕對電子傳遞速率是一致的。由此證明圖 1A 中結果的差異是由于不同波長下藻細胞的光系統(tǒng) II 功能性光學截面積 Sigma(II)λ 的大小不同引起的 (Schreiber, Klughammer et al. 2011, Schreiber, Klughammer et al. 2012)。這種利用絕對電子傳遞速率 ETR(II)λ 繪制的快速光曲線在未來的科研中可能會發(fā)揮越來越重要的作用。
圖1 利用相對電子傳遞速率(A)和絕對電子傳遞速率(B)分別繪制的快速光曲線(引自Schreiber et al., 2012) | |
利用 MULTI-COLOR-PAM 分別以藍光(440 nm)和紅光(625 nm)作為光化光源,測量小球藻(Chlorella sp.)的快速光曲線。 | |
圖A中,rETR 的計算采用 0.42 作為 ETR factor。 | |
圖B中,藍光和紅光激發(fā)下獲得的光系統(tǒng)II功能性光學截面積 Sigma(II)λ 分別為 4.547 和 1.669 nm2,計算絕對電子傳遞速率 ETR(II)440 和 ETR(II)625 的 Fv/Fm 分別為 0.68 和 0.66。 |
選購指南
一、懸浮樣品測量基本款
系統(tǒng)組成:通用型主機,標準版檢測單元,懸浮液的光學單元,數(shù)據(jù)線,工作臺,軟件等
懸浮樣品測量基本款 |
二 、高等植物葉片測量基本款
系統(tǒng)組成:通用型主機,標準版檢測單元,特制葉片夾,數(shù)據(jù)線,工作臺,軟件等
高等植物葉片測量特制葉夾 |
三、其他可選附件
1,ED-101US/T: 控溫裝置,安裝在 ED-101US/MD 上,為懸浮液控溫;可外接循環(huán)水浴來控溫,
2,US-SQS/WB: 球狀微型光量子探頭,可插入樣品杯中測量 PAR;由主機 DUAL-C 控制。
3,PHYTO-MS:磁力攪拌器,連接到光學單元 ED-101US/MD 的底部對懸浮液進行攪拌。
產(chǎn)地:德國WALZ
參考文獻
數(shù)據(jù)來源:光合作用文獻 Endnote 數(shù)據(jù)庫,更新至 2021 年 1 月,文獻數(shù)量超過 10000 篇
原始數(shù)據(jù)來源:Google Scholar
1.Grund, M., et al. (2022). "Heterologous Lactate Synthesis in Synechocystis sp. Strain PCC 6803 Causes a Growth Condition-Dependent Carbon Sink Effect." Applied and Environmental Microbiology 0(0): e00063-00022.
2.Xiao, X., et al. (2022). "Effects of three graphene-based materials on the growth and photosynthesis of Brassica napus L." Ecotoxicology and Environmental Safety 234: 113383.
3.Xie, S., et al. (2022). "Enhanced lipid productivity coupled with carbon and nitrogen removal of the diatom Skeletonema costatum cultured in the high CO2 level." Algal Research 61: 102589.
4.Bernát, G., et al. (2021). "Photomorphogenesis in the Picocyanobacterium Cyanobium gracile Includes Increased Phycobilisome Abundance Under Blue Light, Phycobilisome Decoupling Under Near Far-Red Light, and Wavelength-Specific Photoprotective Strategies." Frontiers in Plant Science 12(352).
5.Ma, Z., et al. (2021). "Inhibitory effects of Prorocentrum donghaiense allelochemicals on Sargassum fusiformis zygotes probed by JIP-test based on fast chlorophyll fluorescence kinetics." Marine environmental research 170: 105453.
6.MATTILA, H., et al. (2021). "Differences in susceptibility to photoinhibition do not determine growth rate under moderate light in batch or turbidostat–a study with five green algae." Photosynthetica.
7.Mehmood, S. S., et al. (2021). "Integrated analysis of transcriptomics and proteomics provides insights into the molecular regulation of cold response in Brassica napus." Environmental and Experimental Botany 187: 104480.
8.Michel-Rodriguez, M., et al. (2021). "Underwater light climate and wavelength dependence of microalgae photosynthetic parameters in a temperate sea." PeerJ 9: e12101.
9.Qu, L., et al. (2021). "Elevated pCO2 enhances under light but reduces in darkness the growth rate of a diatom, with implications for the fate of phytoplankton below the photic zone." n/a(n/a).
10.Schansker, G. (2021). "Kinetic characterization of the interaction of NO with the S2 and S3 states of the oxygen-evolving complex of Photosystem II." bioRxiv: 2021.2001.2010.426130.
11.Schreiber, U. and C. Klughammer (2021). "Evidence for variable chlorophyll fluorescence of photosystem I in vivo." Photosynthesis Research.
12.Suka?ová, K., et al. (2021). "Perspective Design of Algae Photobioreactor for Greenhouses—A Comparative Study." energies 14(5): 1338.
13.Terentyev, V. V. (2021). "Loss of carbonic anhydrase in the thylakoid lumen causes unusual moderate-light-induced rearrangement of the chloroplast in Chlamydomonas reinhardtii as a way of photosystem II photoprotection." Plant Physiology and Biochemistry 168: 501-506.
14.Wang, C., et al. (2021). "Harmful algal bloom-forming dinoflagellate Prorocentrum donghaiense inhibits the growth and photosynthesis of seaweed Sargassum fusiformis embryos." Journal of Oceanology
15.Limnology: 1-15.
16.Zavafer, A., et al. (2021). "Normalized chlorophyll fluorescence imaging: A method to determine irradiance and photosynthetically active radiation in phytoplankton cultures." Algal Research 56: 102309.
17.Zav?el, T., et al. (2021). "Monitoring fitness and productivity in cyanobacteria batch cultures." Algal Research 56: 102328.
18.Andrzejczak, O. A., et al. (2020). "The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming. ." Int. J. Mol. Sci(21): 1546.
19.Chen, Y., et al. (2020). "Astaxanthin biosynthesis in transgenic Dunaliella salina (Chlorophyceae) enhanced tolerance to high irradiation stress." South African Journal of Botany 133: 132-138.
20.Pavaux, A.-S. (2020). "Chemical Ecology of the toxic dinoflagellate Ostreopsis cf. ovata in N.W. Mediterranean Sea." 學位論文.
21.Smolova, T., et al. (2020). "Cortical photosynthesis as a physiological marker for grape breeding: methods and approaches." BIO Web of Conferences 25: 02018.
22.Terentyev, V. V., et al. (2020). "The Main Structural and Functional Characteristics of Photosystem-II-Enriched Membranes Isolated from Wild Type and cia3 Mutant Chlamydomonas reinhardtii." Life(10): 63.
23.Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.
24.Grund, M., et al. (2019). "Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803." Biotechnology for Biofuels 12(1): 43.
25.R?kke, G. B., et al. (2019). "Unique photosynthetic electron transport tuning and excitation distribution in heterokont algae." PLoS ONE 14(1): e0209920.
26.Schreiber, U., et al. (2019). "Rapidly reversible chlorophyll fluorescence quenching induced by pulses of supersaturating light in vivo." Photosynthesis Research: 1-16.
27.Wang, W. and Y. Sheng (2019). "Pseudomonas sp. strain WJ04 enhances current generation of Synechocystis sp. PCC6803 in photomicrobial fuel cells." Algal Research 40: 101490.
28.Yanykin, D., et al. (2019). "Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons." Photosynthesis Research: 1-15.
29.Chartrand, K. M., et al. (2018). "Living at the margins–The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts." Marine environmental research.
30.Goessling, J. W., et al. (2018). "Modulation of the light field related to valve optical properties of raphid diatoms: implications for niche differentiation in the microphytobenthos." MARINE ECOLOGY PROGRESS SERIES 588: 29-42.
31.Khorobrykh, A., et al. (2018). "Photooxidation and photoreduction of exogenous cytochrome c by photosystem II preparations after various modifications of the water-oxidizing complex." Photosynthetica: 1-10.
32.Li, F., et al. (2018). "Diatom performance in a future ocean: interactions between nitrogen limitation, temperature, and CO2-induced seawater acidification." ICES Journal of Marine Science.
33.Lin, L., et al. (2018). "Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide." Environmental Science Pollution Research.
34.Miao, H., et al. (2018). "Calcification Moderates the Increased Susceptibility to UV Radiation of the Coccolithophorid Gephryocapsa oceanica Grown under Elevated CO 2 Concentration: Evidence Based on Calcified and Non‐Calcified Cells." Photochemistry and Photobiology.
35.Morelle, J. and P. Claquin (2018). "Electron requirements for carbon incorporation along a diel light cycle in three marine diatom species." Photosynthesis Research 137(2): 201-214.
36.Morelle, J., et al. (2018). "Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods." Estuaries and Coasts: 1-19.
37.Nikkanen, L., et al. (2018). "Regulation of chloroplast NADH dehydrogenase-like complex by NADPH-dependent thioredoxin system." bioRxiv: 261560.
38.Preuss, M. and G. C. Zuccarello (2018). "Comparative studies of photosynthetic capacity in three pigmented red algal parasites: Chlorophyll a concentrations and PAM fluorometry measurements." Phycological Research 0(0).
39.Sung, M.-G., et al. (2018). "Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana." Biotechnology for Biofuels 11(1): 70.
40.Ternon, E., et al. (2018). "Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom." Harmful Algae 75: 35-44.
41.Zav?el, T., et al. (2018). "Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata." Journal of Photochemistry and Photobiology B: Biology 181: 31-43
42.Béchet, Q., et al. (2017). "Modeling the impact of high temperatures on microalgal viability and photosynthetic activity." Biotechnology for Biofuels 10(1): 136.
43.Havurinne, V. and E. Tyystj?rvi (2017). "Action spectrum of photoinhibition in the diatom Phaeodactylum tricornutum." Plant and Cell Physiology: pcx156.
44.Kalaji, M. H., et al. (2017). Chlorophyll Fluorescence: Understanding Crop Performance—Basics and Applications, CRC Press.
45.Lamb, J. J. and M. F. Hohmann-Marriott (2017). "Manganese acquisition is facilitated by PilA in the cyanobacterium Synechocystis sp. PCC 6803." PLoS ONE 12(10): e0184685.
46.R?kke, G., et al. (2017). "The plastoquinone pool of Nannochloropsis oceanica is not completely reduced during bright light pulses." PLoS ONE 12(4): e0175184.
47.Savchenko, T., et al. (2017). "The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis." Planta: 1-14.
48.Shin, W.-S., et al. (2017). "Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris." Scientific Reports 7(1): 17929.
49.Laviale, M., et al. (2016). "The importance of being fast: comparative kinetics of vertical migration and non-photochemical quenching of benthic diatoms under light stress." Marine Biology 163(1): 1-12.
50.Murphy, T. E., et al. (2016). "A radiative transfer modeling approach for accurate interpretation of PAM fluorometry experiments in suspended algal cultures." Biotechnology Progress: n/a-n/a.
51.Shin, W.-S., et al. (2016). "Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity." Journal of Applied Phycology: 1-10.
52.Yanykin, D. V., et al. (2016). "Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition." Journal of Photochemistry and Photobiology B: Biology 164: 236-243.
53.He, J., et al. (2015). "Photoinactivation of Photosystem II in wild-type and chlorophyll b-less barley leaves: which mechanism dominates depends on experimental circumstances." Photosynthesis Research: 1-9.
54.Lin, L., et al. (2015). "Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa." Environmental Science and Pollution Research: 1-8.
55.Polishchuk, A., et al. (2015). "Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry." Bioresource Technology 193: 469-476.
56.Tamburic, B., et al. (2015). "Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae." ChemSusChem.
57.Yanykin, D., et al. (2015). "Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments." Journal of Photochemistry and Photobiology B: Biology 152: 279-285.
58.Klughammer, C. and U. Schreiber (2014). Apparent PS II absorption cross-section and estimation of mean PAR in optically thin and dense suspensions of Chlorella. Photosynth Res.
59.Szabó, M., K. Parker, et al. (2014). Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis. Bioresource Technology 167: 521-529.
60.Szabó, M., D. Wangpraseurt, et al. (2014). Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis. Plant Physiology and Biochemistry.
61.Tamburic, B., M. Szabó, et al. (2014). Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata. Bioresource Technology 169: 320-327.
62.Hakkila, K., T. Antal, et al. (2014). "Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803." Biochim Biophys Acta 1837(2): 217-225.
63.Reigosa, M., D. Wangpraseurt, et al. (2014). "Spectral Effects on Symbiodinium Photobiology Studied with a Programmable Light Engine." PLoS ONE 9(11): e112809.
64.Schreiber, U. and C. Klughammer (2013). Wavelength-dependent photodamage to Chlorella investigated with a new type of multi-color PAM chlorophyll fluorometer. Photosynthesis Research 114(3): 165-177.
65. Bernát G, Schreiber U, Sendtko E, Stadnichuk IN, Rexroth S, R?gner M, Koenig F (2012) Unique Properties vs. Common Themes: The Atypical Cyanobacterium Gloeobacter violaceus PCC 7421 is Capable of State Transitions and Blue-light Induced Fluorescence Quenching. Plant & Cell Physiology: in press.
66.Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of Multi-Color-PAM chlorophyll fluorometer. Photosynthesis Research: in press.
67.Schreiber U, Klughammer C, Kolbowski J (2011) High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. PAM Application Notes, 4: 1-19.